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ABSTRACT

This work considers the presentation of equations for the perturbed motion of an airplane in
the form of single-loop block diagrams, A brief analysis is given of the characteristics of the in-
dividual links and of their change with changing flight speed and altitude. A derivation of trans-
fer functions for control with elevator, rudder, and aileron is presented, as well as simplified ex-
pressions for the transfer functions, depending on the frequency range, which correspond to break-
ing up the perturbed motion into simple types,

The representation of the equations of perturbed airplane motion in the form of single-loop
block diagrams permits a simple and easy application of contemporary methods of control theory
to the analysis of airplane motion, and also allows rapid formulation of simplified equations of
motion and transfer functions applicable during control with the control elements,

INTRODUCTION

In the last 15 to 20 years the theory of automatic control has reached a very high degree of development,
The methods of this theory permit one, on the basis of physical ideas, to analyze relatively simply and conven-
iently, the stability and nature of the transmission characteristics of dynamical systems, This refers in particular
to systems which are represented in the form of single-loop diagrams consisting of simple links [3],

However, this progress of the general theory has hardly made contact with the theory of dynamic aircraft
stability, either with autopilots or without them, Just as it was 20 years ago, stability calculations are conducted
by classic methods through investigation of the roots of characteristic equations, which requires lengthy calculation
and still does not allow the assignment of a physically simple and easily perceived representation of the process of
control and steering of aircraft,

Only in the very recent past have a few works dedicated to these questions appeared. From the Soviet
literature, the book by L V., Ostoslavskii and V. S. Kalachev should be pointed out, Basically, this book applies
frequency methods to the analysis of short-period longitudinal oscillations, Work by Spearman and some others
(see list of references) presents the theory of transfer functions and frequency characteristics of aircraft for cases
of rapid motions about the center of gravity,

However, all these works are either limited to the analysis of individual types of motion, or they are based
on simplifying assumptions which are mostly unproven and occasionally wrong. But there does exist the possibility
of a complete analysis of airplane motion which does not include any unfounded assumptions and encompasses all
types of motion, It is possible to represent the equations of motion of an airplane in the form of a simple block
diagram, in which it is easy to apply modermn methods of control theory: circuit analysis, frequency methods,
theory of compensating networks, etc. This report is devoted to those problems,

Any system of linear differential equations with constant coefficients can be represented in the form of a
block diagram; however this diagram usually turns out to be multi-loop. It is difficult to apply the methods of
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control theory to such a diagram, On the other hand, any system can be represented as a single-loop dia-
gram; however the links of such a system will be devoid of physical me.ning. Therefore, in our work we
atempted to present the system of equations of perturbed motion in such a form that it could be expressed
by a single-loop diagram with links of the first or second order, and with signals having a simple physical
meaning at the input and output of the links,

This work is not claimed to be a complete analysis of perturbed airplane motion through single-loop
block diagrams. It is intended to point out the possibility of such a representation, and to show its advan-
tages, Therefore, to illustrate the proposed method only airplanes with ®conventional® characteristics are
considered. In particular it is assumed that the airplane possesses sufficiznt longitudinal static stability, direc-
tional stability, etc.

In analyzing the perturbed motion of an airplane, we will not mak= any assumptions except those which
are nommally made in the theory of dynamic airplane stability [1, 2]. In particular we shall always assume that
the equations of motion are linearized. Separate simplifying assumptions will always be pointed out in the
appropriate places, and their use justified,

We note, however, that all the discussion and conclusions of this work are applicable only in the case
when the initial unperturbed motion takes place in the syminetry plane of the airplane. In particular, in the
initial motion

T=B=mx=my=o' (h

The authors express their deep gratitude to Doctor of Technical Sc.ences M. A, Taits and engineer E. N.
Arseh’ev, who made many valuable comments during the preparation of -his work, and also to the technicians
L. N. Frolova, A, S, Verevkina and K. A. Lapshina, who performed all th:: calculations and editorial work.

SYMBOLS

t - time
. . - od
p - Laplace operator; in this work p = a

W (p) - transfer function of a link or system of links
m - mass of the airplane

a — angle of attack at the center of gravit:
B - angle of sideslip at the center of gravi'y
H — flight altitude
¥ .9, y - angles of yaw, pitch, and bank
6 — angle of inclination of the trajectory t» the horizontal
V - velocity of the airplane's center of gravity
Wy Wy, w, — projections of angular velocity along thie airplane axes
Y ——} ey 28V — lift force
l ~
Q=7 €,pSV? — drag
P - thrust

X -Q - P — braking force (net component of all ae ‘odynamic forces, including thrust,
along the tangent to the trajectory)
i 1

M, = *'2 “m SV
I o
My = Ky my:SV¥ \ components along the principal axes of the plane, of the moment of the
| aerodynamic forces® including the thru-t, taken about the center of gravity.
1
My = — myusver |
4 )

¢ Coordinate axes x, y, z originate at the center of gravity and are dire« ted along the principal axes of the
airplane. Axis Ox—forward, axis Oz~to the right, axis Oy-upward, perper-dicular to Ox and Oz,



L= Tzﬁ cz28V? — Lateral component of aerodynamic forces along the z axis
! - wing span

b - chord length (average)

p:-z—‘"l — relative longitudinal density of the airplane
e
2m . - .
p = — — relative lateral density of the airplane
pS¢
Tes 2’% — unit of time reduced to dimensionless form
pS

o T 1 P S ) . . )
re ;:-—l —, Fye=C — ., rpm— —— - dimensionless radii of gyration
{ m 3 m b

”m

w - frequency of oscillations

¢ - relative coefficient of damping of a second order link
k — amplification factor®of a link or system of links.
The subscript indicates the derivative with respect to the parameter in the superscript. For example,
78 97
=0

* Translator's Note: Many Americans would prefer to call k simply the *value of the transfer function at zero
frequency.” The term "amplification factor® is particularly misleading in cases where the input and output quan-
tities have different dimensions and hence are not directly comparable,
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k
W, = .
W P)= e 1
1
in which ky = a is the amplification factor® of link I

0

Ly = ——Al— is the relative damping coefficient;

172V A, ’

1 .
Ty =5~ is the time constant of the link; and
v A,

1 .
wy == is the reference frequency of the link.
1

It is easy to see that ky is directly proportional to the square of tte time unit 72, that is, inversely pro-
portional to the squares of the flight velocity and air density.

The reference frequency of link I increases, other conditions beir:g equal, in direct proportion to the flight
velocity and decreases with decrease of the density p. The relative damping coefficient ¢, does not depend
directly on the speed, and decreases almost proportionally to \/p.

The expanded expression for the transfer function of link II has the following form:

; 1
W, (py = —— = o :

M A')SP‘;M’;V E M M M MY Se
p“+[(c,)7-cx _— = —'nTsmO p-+ (Cy*!*TC, )cosﬂ-—— [ ';c_\ )smﬂ] ';,'g

2 ;, m m

First of all it is imnportant to note that the reference frequency of link 11

“’2:1/ [(cy+—g‘-c;‘ )cosﬂ— (c,+-%cf )sinB ]‘E";-g

does not depend directly on the velocity. It can vary only with the Mach number M. Therefore, the frequency
ratio of links I and 11 will increase with increase of flight speed. The same can be said of the amplification

1
factor ky= —.

oH

The frequency w, decreases proportionally to the decrease of fp_ , that is, it decreases with the increase
in altitude, and the amplification factor k, increases with the decrease of p, in inverse proportion,

At some sufficiently large angle 6 we can have the equation

_and, therefore, the decrease of wy down to zero; with the further increase of @, link II becomes unstable, The
amplification factor k, will increase to ky = m (w, = 0) with the increzse of 9. Therefore, the expression of
the transfer function in terms of k, T and T, as accepted in control thzory is not always convenient, because
in airplane dynamics it is frequently necessary to deal with unstable links and with the consequent difficulties
of interpretation of indeterminate quantities containing 0 and .

In particular, the relative coefficient of damping

* See translator’s note, p. 3,
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depends on V, p and @in a very complex way.

In this case the damping of link II can be evaluated more simply through the damping coefficient of the
natural motion of link II, which is equal to half the coefficient ofB and time, during which the natural oscilla-
tion decreases by the factor e ~ 2,718,

The damping coefficient of link II for the aerodynamic data assumed for the calculation has following
magnitude:

for the altitude H = 5,000 meters

0, 690'019) 0,0751.222 9,81

57 sin8=0,0142 — 0,0441 sin 6,

(o 022 +

for the altitude H = 12,000 meters

(0 032 4 %78 750081) -"%’f—” —%2%' sin 8 = 0,0134 — 0,0441 sin .

Thus it is obvious that with increasing angle of climb, the damping of link II decreases, and at 9 =
=18" - 19° link II becomes unstable, the natural motion being an increasing oscillation, This explains to a
great degree the stability deterioration during a climb [1, 2],

During horizontal flight @ = 0 and the damping of link II is directly proportional to flight speed and air
density p. During a climb or descent, there appears in the damping coefficient a third term, which decreases
the damping during ascent and increases it during descent, in both cases in inverse proportion to the flight speed.

Y
P - - . s ;
The second term  —— for subsonic and trans-sonic planes with turbojet engines is small and unimportant,
m

s - ap ] . . .
However, with increase of speed, the derivative of thrust P¥ = FI72 of jet engines increases considerably; there-

fore, the damping of link Il will decrease. It is conceivable that at high flight speeds this link can become un-
stable, or the stability will be so low that an anifical damping of the long period motions will become necessary,
for example, by an automatic device which affects the thrust by an amount depending on the speed change dur-
ing the oscillations,

The transfer function of link HI has the following form:

W,(p)=s—[¢:‘l S 'V E-p+ (¢ cos b~ c°sln0)s’v ]

The expression Wy {p) can be conveniently represented in the following form:

W,(p)=—k{T:p+1].

ky = (¢c;c08 8 —csinb) %g—(c;cosﬁ—q sin8) =

where

is the amplification factor of link III;

1 < Vv

[fm—m—=

y c coshh—cisinh g



is the time constant of this link,

It is easy to see that the time constant Ty of the link increases in d.rect proportion to flight speed., Dur-
ing horizontal flight ¢ = 0 and therefore
’o sV _dz{, V
T i
3

4 —Oc_\, g

that is,T, is detenmined in this case by the tangent of the angle formed by the tangent line to the polar curve *
for the plane (at M - const). With increasing angle 0 during a climb, th: denominator begins to decrease, and
«

Cy . : P
at a very large angle 9 = arc tan Y it becomes zero; at the same ti ne, the amplification factor k; decreases

o

Cx
in the same proportion, In order to see clearer the changes in characteri;tics of link III, let us express its trans-
fer function in a different form:

Wy(p)=*k.1, (.n + oy);

- 2 [¢3
) . a S pV
here the quantity kgTg = ¢ — 9{-7— = Z— does not depend on the anglz . The reference frequency of the
’ m 2 n
link - ' PR
1 N N
e o= e
T, < v

'

«
. . . ) . c
is inversely propertional to flight speed. During a climb with a very larze angle g = arctan Y the reference

o
Cx
frequency becomes zero;  at this angle of ascent link III becomes a pur::ly differentiating link of the first order
. . X« . . .
with an amplification factor of - =—, and with further increase of angle 6 link III becomes unstable.
m
Because of the decrease of reference frequency of link I with increase in velocity, its frequency charac-

.eristics are displaced towards the low-frequency side.

In the general case link IV is a differentiating link of the second « rder

" et ( yv Mz 100 ) iy
Ap) = p? e o | e e S 2 -
‘(P) / V mV cost J V) J:

TR L MNowm M Sp w, BS.

—p v l[("'+ ) o (\cx+ 5 c? t_gﬂ . -1 2.I,tg6 }p—!—
Moy SeV My ( M\ oa] SV
omM i m M e oM gl

+ 02, RIS L'V+ 2 + 2 ) 3 J 2mJ ,

Ato - ¢ ilis link becomes a link of first order. It is easy to see t1at reference frequency of such a link
increases in proportion to the flight velocity and decreases with decreasing air density.

Frequently the total aerodynamic moment depends only to a small degree on the Mach number M, that
M

is, mi - 0. In this case we obtain a quadratic expression which can ea ily be factored:

’ N P LA [ Mo Mcu\t glsf]
W, (p)={p— m: %-l‘p - [(Cy% 26},) ‘cx-i— 9 ‘.)g .

» Translator's Note: curve of ¢, versus Cxe

y
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Therefore, when mx‘\z'I = 0, link IV represents the tandem combination of links of first order with transfer functions

b%S
24,

vi=r' [l o ]

W, (p)=p—m}:

The first of these links is the same as link IV at@ = 0, but without the multiplier

, M )\ Se
k.‘———'(cy’{"""z C)' )'7"_‘.

At® = 0 the second link becomes a purely amplifying link with the amplification factor kg, Conditional-
ly we can consider this link as hiving infinite frequency; at @ # 0 its frequency becomes finite and equals

. M o\ 1 M u
=llc My =2
K l(y+2 Y):ge (C‘+2C*)

sV

m

With increase of angle  this frequency decreases rapidly and can become equal to the frequency of
the first link
=, S

w, = — m%s .

4 ] 2]3

At small angles 6 the frequency w," is large and this second link can be regarded as amplifying. In
other words, at small & we can consider link IV as being identical to link IV at 8 =0,

At large angles 9 the frequency of link IV®
r — ™ T T 7 remains unchanged, but the frequency of link IV®
@, decreases rapidly, Figure 4 shows the change in
T 7 frequency of all links of the stabilization loop with
T ’ T change of the angle @ , calculated for our example
|~ “»W[“ T (H = 12 kilometers), Frequencies w; and wjy prac-

> ' B tically do not change; frequencies wy and w, change
T _"’4 Wity i insignificantly. A particularly large change takes
B » NI place in the frequency wy, which draps from an in-
t finitely large value at § = 0to 0 atg = 3 90°%

S A S R AR 1 B A S N In the case MY, # 0 (when the Mach number
TTrrrt i ’ RN M influences the coefficient my) the analysis be-
—1- - e comes more complex, but even in this case the same

- ’}’ T U177 ,A i relations are still valid: link IV can usually be ex-

i CETONTT T T e pressed in the form of two links of the first order

: / i ' counected in tandem; here at small 9 the second
T /{:;:‘;/7 T 11 N /R link has a high frequency and we can practically con-

A 4 H[‘/V '; - ‘*—l (Z)[,’%K sider link IV as a link of first order with the transfer

7 W N function
b LINENL
-90 -00 -30 g 30 60 906

YY— xVige MY
WIA (p)x_‘ E“ z

Fig. 4, The influence of the angle 6 of inclination of my Js

the trajectory, upon the frequencies of link of the sta-

bilization loop. Altitude 12 kilometers, For large values of 6 the reference frequencywj
will change negligibly, but the reference frequency
wj will drop from infinity to 0.
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Let us consider link V. When expanded the transfer function of this link will have the following form:

4 2m3?
.._c;’, . ﬁ{ M __ —_—t _Ai M 2
=- p+[cy (c,-}— 3 s 34 s le,+ c, | o

is a coefficient for the derivative of engine thrust with respect to speed,

Wap)= Tp o p g (e g e —et) - (o G o )] S =

where c; =2
SpV

It is convenient to represent this link in the form

W (p)=k [Top+1]=kT, [P+ v,
sl -l 2]
y

is the reference frequency of the link and

I¢.=[t‘; (et 5 ch—c)- & (o + on )| 20

where

is the amplification factor of link V,

The natural frequency wg increases proportionately to the speed and decreases proportionately to the air
density. The amplification factor of link V increases proportionately to tiie square of the speed and decreases
proportionately to the square of the air density,

In the formulas for wg and ks the expression in parentheses can becone zero at certain speeds and alti-
tudes. If we disregard lhe influence of Mach number M on changes of the coefficents ¢, and c,, and also ne-
glect the coefficient cp, then at a certain angle of attack the following :quation will apply

..

cx ¢, Ocy

In this case we will have A(«, V) = 0, that is, link V will become purely differentiating with ampli-

Ya

fication factor
mv

; at even larger angles of attack the quantity A(a, V) will become negative, i. e., link

V will become unstable, The quantity A(«, V) becomes zeroatan angle «f attack which corresponds to the opti-
mum regime,

For contemporary supersonic planes with jet engines the coefficient cg >0 and reaches considerable mag-

nitude, The influence of Mach number M on coefficients cy and cy, in guneral, cannot be neglected. There-
fore, A (a, V) usually becomes zero at angles of attack which are different from the angles corresponding to

( y ) nax,
CX

Let us consider link VI, Link VI is a differentiating link of second crder. When expanded, the transfer
function of this link takes the following form:

i3
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. . M s -
W (P)=P’+[(—;y~+ €t ol );pV——{— sinBJp+

sl (et ama)-aler o))+
(et o )eoss — (e, 4+ A et Ysin % e

The coefficient of p depends primarily on the first term and therefore increases proportionately to the
flight speed, but with increase in altitude this term decreases proportionately to the air density p. In the
first factor the term containing c? is the most important,

Of the two terms most containing p, the first was already considered in link V. This is the reference

1 SpVv
frequency wg with the multiplier — 2e7,
¢, m

The term increases proportionately to the square of flight speed.

The second term does not depend on flight speed and can charge only indirectly through the influence of Mach

number M.

Usually link VI possesses more than critical damping and can be expressed in the form of links VI* and

VI* of the first order connected in tandem:

We ()= W5 (p) W5 (p)=(p + ) (p + w)).

In our example

at altitude 5,000 m,W¢(p) - p> + 1,304p + 0,01932 = (p + 1,289) (p + 0,015);
at altitude 12,000 m,Wg(p) = pz + 0.584p + 0.00826 = (p + 0.57) (p + 0.0145),

Figures 5 and 6 show the characteristics of first-order links VI* and VI*, and also of the equivalent second-

order link IV with transfer function W¢(p).

20lg{w)
60 r -
H=5000m1 m/,]
el
A
40 o< L4
/ o
//
20
l 4 ,/,
Ws=001] W =q136| -
0 1L ol
Qo1 qorN_ al /,o\ 0 100w
o Wy 90152 Wy =126
180 | o
135
g0
45
—-r) i
o Qoo o01 a 10 19 100w

Fig. 5. Logarithmic frequency characteristics of con-
trol links for longitudinal motion. Altitude 5,000 m,
velocity 800 kilorneters per hour. Amplification factor
kg =(0.0141/sec?) (—36.8 db); k¢' = (1.289/sec) (2.2
dby; k3 (0.015/ sec)(~36.5 db); kg = (0.01934/ sec?)

(— 34,3 db).

Nig(w)
0 T T
H= 120001 / L
40 »Z 72
F 4 V4
¥ 7 47 P
| / L
/ ' i
@-0091| -
o 3 r ‘/
o,oa// a01 a1 / 10 10 100w
-
b d WFQUoeI| Wg=00ms W57
180
/4
138 //
' ) '/ id
90 — z —F=
/Y < (//
o5 L
/ A /.
/40; L o
z —X] 7
o aoor 007 g1 10 10 100

Fig. 6. Logarithmic frequency characteristics of con-
trol links for longitudinal motion. Altitude 12,000 m
velocity 800 kilometers per hour. Amplification factor:
ks =(0.0121/ sec?) (-58.3 db); kg = (0.57/sec) (~4.9
db); k3 = (0,0145/sec) (-36.6 db) kg = (0.00855/ sec?)
(— 41,5 db),
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Finally, let us Jook at link VIL In the denominator of its transfer finction there is an expression which
is equal to the transfer function of link V divided by V.

In the numerator we can also separate out an operator, which describes link V, multiplied by Vcoso.
During horizontal flight at@ = 0 this link VI becomes a simple amplifying link with the amplification factor
ky = 1, At small values of angle § we can approximately consider

W (p)=1.
At large values of angle © we have to carry out a detailed analysis of the transfer function of this link,

Figures 5 and 6 show the amplitude-frequency and phase-frequency characteristics of link V and VI, cal-

culated for the caseg =0,

Section 3., Transfer Functions of Control Links, Simplification of Equations of

Motion and Transfer Functions

The system of links I-IV forma closed loop for airplane stabilization. This loop can be conveniently opened
after link IV, The transfer function of the opened system is

Wip)=— Wi (p) Wa(p) Ws(p) W, (p). (3.1)

Usually, in control theory [3] the transfer function of an open loop is pref xed by a plus sign, This is obtained
because an error signal is supplied as an input into the first link, Becaus: in our case the output signal of the
last member is fed into the first member with the plus sign, and not a mi1us sign as is usually done in controt
theory and tracking systems, it is more convenient to prefix a minus sign to the transfer function, In this way,
the usual stability criteria of general control theory are preserved,

The characteristic equation of the closed system will have followirg form:

1 1+ W(p)
W)W, (p) =Y
mo v POV =

It is easy to confirm by direct calculation that this equation agrees with the usual characteristic equation
[1, 2). At the same time, representation of the transfer function in the fcrm of (3.1) allows us to apply the widely-
known contemporary methods of control theory [3], particulary frequency methods,to the analysis of airplane sta-
bility, With this it is easy to see which link is the decisive one, and whe-e it is necessary to introduce a correct-
ing link.

In particular, the constant term a4 of the characteristic equation e uals

1 ! M2 oYYy MYy
A= — — Mk = ()= -2t 20
kyky ki k, J, my J,mV
where k = —k;kykgkg = W (0) is the amplification factor of the opened stal ilization loop in the static regime

(p=0).
Expanding the equation for a,, we obtain
A e YVeosi— XVYsing MY g Y’ cosB— X"sinb

dy = = e = — — .

J, v m J. VvV m

which corresponds to the usual expression [1].

From the condition of aperiodic stability

1
a,=——kk, >0
kiR,
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it can be immediately seen that increase of the amplification factors ky and k,, that is,decrease of the static
stability and of the derivative of lift force with respect to speed, lowers the stability; conversely, an increase
of the coefficients k, and kg, that is, an increase of the derivative of lift force Y and increase of —J-- ( as

z

a result of compressibility), acts in a stabilizing manner,

The equations of motion of the airplane can be expressed in an abbreviated form as follows:

i M
da= W) (p)lW. (p)AV+7’ Aa]. |

(3.2)
AV =W, (p) W, (p) Aa.
Hence
Wi M
a: e - -
Lwpy s,
W, (p) W (p) Wa(p) M
AV = ,,,.',(ﬁ),, :(f)_ ‘,_(,/) — A8,
1+ W(p) Js
. Wy (p) We () Wo(p) MY
A=W W (p)ha= 2220 TR TN T )
2 (P) W, (p) ba LW ) 7, (3.3)
. Wi (p) Walp) Ws(p) M,
— 117 7 P ‘ RN
A= W, (p) W, (p) Az V) el
1 Wy (p) Wy(p) W, w M
AH-—'—W.,(p)M:-»I(p) 2 (p) Wi (p) W1 (p) Mz s3
» i+ W(p)] Iz

Formulas (3,3) detemmine transfer functions relating the basic kinematic parameters to the elevator de-
flection angle. These transfer functions can be analyzed easily by control theory methods, in particular with
the help of frequency methods; in addition, in calculation of the frequency characteristics for [1 + W (p)]
we can use the well-known diagram [3] which allows us to calculate the frequency characteristics of the closed
system when the frequency characteristics of the open system are known.

However, in these calculations, the main advantages of the frequency methods, simplicity and clarity, are
lost,” Therefore, we shall henceforth simplify all transfer functions, the simplification being based on the fact
(see Section II) that the natural frequencies of the individual links are widely separated on the frequency scale,
Let us consider first the case of horizontal flight.

Let us compare the roots of the characteristic equation

1
e W (p) W, (p) =
¥, (7) W, () s(P)Y W, (p)=0

for the case of a plane with an immobile rudder, with the roots of the equations describing links I and IL The
calculations will be carried out for both altitudes,using the previously assumed aerodynamic data,

As a result we obtain two algebraic equations of fourth degree:

at H = 5,000 meters

P'+2,914p* +-8,331p* 4 0,1188p + 0,0294 =0,

at H = 12,000 meters

P* + 1,299p° + 3,278p" + 0,0455p 40,0201 =0,
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Table II presents the results of calculation of the roots of the complete characteristic equation, and

1 1
the roots of polynomials which describe links I and II (—’ =0 and :O)_
poty W, (p) W2 (r)
TABLE II
; -
Characteristic Roots H = 5000 1n H = 12000 m
equations
p— 5 { — {
Complete { Large 1.4542.47: 0.644 4 1,687i
Small —0,00655 4 0,0692/ —0,00564 0,0783/
1
PR, ink — Lo i — 3Qf
v, Link 1 1.450 + 2,490 0,642+ 1.69
1
=0 Link 11 —0.007 +0.0651i —0.0067 +0,082;
W, (p)
.-

It is known [2] that a pair of large roots characterizes a short-period motion, Calculations of the roots
of the complete equation and roots of the quadratic expression 1/W; (p) = 0, which characterizes link I, show
that the roots in both cases are sufficiently close to one another., This means that the transfer function Wy (p)
quite accurately describes the short-period airplane motion.

Mote than that, in our example the pair of small roots is close in 11agnitude to two roots of the charac-
teristic equation which describes link IL It should be noted that the sufficiently close proximity of the small
roots, which we have obtained in this case, sometimes can not be obtained,

If we are interested only in the short period motion, then in Equation (3,3) we can assume, by way of an
approximation,

| 1
1+ W(p) 1—-W, ()W p)W(p)W (P)

In order to show this, let us rewrite the left side of Equarion (3.4) in the following manner;

=1. (3.4)

1 1
(AT ~ W) (5.5
1 1 . :
w0 W, (p) Wy (P) W, (P) W—;“.(P) W,(pr)

1
Here it is assumed that W, (p) = pj’ because of following considerations, As it was noted before (see sec-

tion 2), the natural frequency of link I is several tens of times larger tha: the natural frequency of link Il An
increase in flight velocity leads to an increase of frequency in link I, that is, to an increase in the difference
between the frequencies of links I and II. Therefore, link I in the region of frequency w,; can be approximately
described by the transfer function

W.(p)=#.

It is easy to convince oneself that in most cases the second term i1 the denominator of (3.5) can be
neglected because of the smallness of the product of the amplification frctors of links I and IV (see Figs,
3 and 4), Therefore, in this case the characteristic equation can be wr tten approximately in the form

1

wop = 0, This fact is well known in the literature {1] and is confirmed by the above example.
1 (P

For the case of short-period motion, the equation of motion (3,2), can be presented in a simplified from
as follows:
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Aa Me
— 7 A8=0. (3.6)

Wl (P) Jz

.

The transfer functions (3,3) for short-period motion can be rewritten, considering the simplified expression
(3.4).

As a result we will obtain the following relations;

§

M
ra= W, (p) 73 A3,
Wi(p) ., M
AV = T Ws(p) A A3,

(3.7

Af 4 W, M A3
M - _—P_“ 5 (p) 72 ]

! , o M
aH = » W (p) W, (p) W (p) i A3,

Harmonic oscillation of the rudder induces oscillations of the angle A «, which will lag in phase the
oscillations A §, The angle of phase shift will increase from 0 to —180° with increase in oscillation frequency
from zero to . The amplitude of the forced oscillations of angle A will increase from the static deflection
of Aa at w = 0 to a maximum value at w = w,, and at w > w, it will begin to decrease again, These changes

are shown in Figs. 2 and 3 [frequency characteristics of the transfer function W, (p)].
5

Let us consider all the other expression in (3,7). Here we shall replace the multiplier W, (p) »j—z Ad
z

by Aa, that is, we shall consider the changes AV, A®*, A6, and ' AH, assuming that the airplane goes through
harmonic oscillations of the angle Aa.

From the system (3.7) it is easy to see that AV = W,(p)W; (p) A a. Withtheaerodynamic data which we
have assumed in our calculations, the dependence of AV on Ao will take the following form (H = 5,000 meters):

M—Aa. (3.8)

AV=
r

As was shown, the natural frequency of airplane vibrations in short-period motion for various examples is

within the limits w; = 1,8 to 2,91 sec-',

If the plane oscillates harmonically through Ao with the frequency w, then the change of velocity A V
will be determined by the transfer function (3.8). The expression in the numerator in this case produces an ad-
vance of 62,5°. Thus harmonic oscillations of the angle A« induce velocity vibrations with a phase lag of
62.5° - 180° = —117.5°. At the amplitude A = 0.1 radians = 5,73%, the amplitude of velocity change will e
small: AV = 0.3 m/sec, that is, 0,135% of the initial velocity V = 222 meters per second,

Now let us consider a simplified expression of the transfer function
A8 Wi (p)
2w, (p) Wi (p) = V2

a v

With the aerodynamic data which we have assumed in our calculation, this transfer function will take form:

= Translator's Note: The equation fora 8 was omitted from (3.7). The reader can supply it by reference to
(3.3).



A8

_ oy Wi(p) _ 1,29p13-2
A’;—Wl(l’)wn(ﬂ)”‘ » ‘ .

p?

Oscillations of the angle of attack with the amplitude A = 0.1 radians induce oscillations of the angle
A0, which lag in phase by 22° - 180° = -158°, with the amplitude A6 : 0,0586 radians. Thus, the airplane’s
oscillation through an angle of attack Aa with frequency w, induces oscillations of the airplane’s center of grav-
ity, which creates a deviation of the velocity vector by an angle whose amplitude reaches 609 of the amplitude
of the angle of attack.

From Relation (3,7 for A9 it is seen that
80 = LW (p) ba= - W, (p) 4] B = a0,
P

Tnus, the angle A 8, in the. case when the airplane vibrates harr onically is a sum of two harmonic vibra-
tions; the vibrations of angle Ao and angle A® (shifted in phase and distorted in the amplitude from the oscilla-
tion of Aax).

Finally, let uslook at the altitude oscillation AH, when the airpane is undergoing harmonic oscillations
of the angle Aa . From Formula (3,7) for AH it is seen that

AH _V , VW
=t Wa(p) W (p) Wi (p) = 72 0,

when 6 = 0 link VII becomes an amplifying link with the amplification factor ky = 1, Therefore, AH in this
case will be a simple integral of the function V « A@. This mears that the vibrationsAH will be shifted in
relation to A« by the additional angle -90°, and willhavethe amplitude AH = 3.1 meters at an amplitude of
Aa = 0.1 radian.

Thus, at large frequencies(rapid oscillations) the motion is reduced only to the change of Aa, A® and
A6 with other parameters being constant,

Let us now consider the slow airplane motion, which is character zed by the pair of small roots of the
characteristic_equation,

In this case link 1 can be approximately considered amplifying withthe amplification factor.

—gf 2m \!
J "zl osv
h=W,(0)=—=,=— 2 . (3.10)
z ml m
? pSb
This property of link I allows us to simplify significantly Formulzs (3.3) for the case of slow motion.
Let us first examine the characteristic equation
1

W (p) W, (p)

+ m;;:(:;—c; tg 8)

—Wa(p)W, (p)==0

considering the simplification (3.10). Let us consider the case of horiontal flight. For horizontal flight
0 = 0 and the characteristic e quation will assume the form

Ap'+Ap+A=0, (3.11)

where

* See Translator's note, preceding page.
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Ay — — — — L% ,
m mV J, Jr mV
« v « MV V e ] a yV V ya
Al=—g Y Y__*_ifi_x_@z M, [,X_y_._‘f_LJ_L, (3.12)
mV my m J, m J, Js m m m m]|V

A veMl YVmile
: m Je m J.\v’

Let us insert into Equation (3,11) the above aerodynamic coefficients, We will cbtain the following equations;

1) For H = 5,000 meters
pr+0,01280+0,00354=0

with the roots py 5, = - 0.0064 3 0.0597i.

2) For H = 12,000 meters
p2+0,0117p+0,00636 =0

with the roots P12 = —0,0068 ¢+ 0,0793i,

These roots are very close to the small roots of the characteristic equation, which have been calculated
previously for the complete system of equations, and do not differ very much from the poles of the transfer func-
tion of link I,

The equations of longitudinal motion, (3.2), when combined with the simplification (3,10) for the case of
slow motion can be expressed in the following form:

ds M
Aw-ﬁ.[mmwﬁ’m].

P (3.13)

AV = W (p) W, (p)Aa.
This system of equations is of the second order,

Let us rewrite Equations (3,3) considering the simplification (3.10). Prior to that let us divide the denomin-
ator and numerator of Formulas (3.3) by W, (p). This transformation, with the consideration of simplification
(3. 10 changes the denominators of Formulas (3,3) into quadratic expressions, Thus, the expression in the de-
nominator can be considered a transfer function of a certain new link, which is close to link II in its character-
istics, We shall call this link a long-period link, and it will be of great importance in the following. As a
result we will obtain the following formulas:

W, (0 M
Adsn — : - _(l) ﬁ: A&,
z
e SR WL () W (p ‘
W " () Wa(p)
Wy (p M
AV = - 2 (4) -2 A3,
L pyw g M
W,(p) th; 3T
W, M
A= 6 (P) ot AL
1 J, 1,

— e W w
W, () IH; (YW p)
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P J:V.r,(p) g_‘ @,
Wi M Ws(p) W, (r)
N7 ;7 | W‘.,(ZP) }V7 (p) ‘:—% A3.. (3.14)
W, (7)‘) — H/I"_‘ W (mW,(p) °*

By introducing into these formulas the aerodynamic data which have been assumed in previous calculations,
we will obtain the following relation between Act and A% :

Y noan
N — . p1+0,014p+0,00428 - :%: A
1 ),
v P+0,014p-+0,00428 — - (8,42p+12,7) (0,000437p-+ 0,000485)

’

_ £2+0,014p +0,00428 5,35
T T (1 —0,000538) p2 + (0,014 — 0,0014) p+0,00428 — (,0009 6,86

It is easily seen that the influence of links III and IV in this case is insignificant, If we neglect this in-
fluence, then we will have a direct proportionality between the displacement of the elevator and the deviation
of the airplane by the angle

8

Ax x> — .—_j A3,
x
z

At frequencies which are close to the natural frequency of the airpiane during slow motion, we will have
a significant change in phase and amplitude of the induced oscillations of the attack angle, in relation to the
oscillations of the elevator. As is shown in Fig. 7, the amplitude of Ax is subject to two sharp changes with
the change of frequency of A & : at frequency w,, equal to the reference frequency of link II, the amplitude
of A areaches its maximum; at w3, equal to the reference frequency of the link which we had previously called
the long period one, the amplitude of Ac reaches its minimum. Further .ncrease in frequency leads to propor-
tionality between the deviations Aa and A5, In exactly the same way the proportionality is preserved at low
frequencies. The sharp change in amplitude from maximum to minimur) is accompanied, as can be seen from
the frequency characteristic in Fig, 7, by a phase lag of the oscillations ¢f A with respect to the oscillations
of A6, and at the frequency corresponding to the point of inflection of tl e amplitude-frequency characteristic,
this phase shift attains a magnitude of 45°,

Now let us consider the change of airplane velocity during a slow cisplacement of the elevator. In our case
this change will be determined by the following transfer function:

t-
AV__ 0,038p+0,057 5,36

v p?+0,0126p+0,00338 6,86

In the numerator of this function there is an expression in which at p = iw, = 0,06i we can disregard the
influence of the imaginary part; in other words at low frequencies link Il can be considered as a purely ampli-
fying link with an amplification factor of 0,057,

In the denominator, there is an expression which describes a long-period link, As we have already shown,
the natural frequency of this link almost equals the frequency of the slow oscillation of the airplane, Therefore,
and also by considering everything that has been said about the numerator of the transfer function, we can say
that the oscillations of the velocity increment AV lag the oscillations of the elevator: in particular, at the
natural frequency of the oscillations the lag angle equals 90°. The amplitude of these vibrations in comparison
to the static deviation AV increases to a certain maximum, and then dec eases; its maximum ratio to the static
value is equal to the ratio between the natural frequency and twice the time it takes the vibtation to decrease
to 1/e times its original value (coefficient of p).
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In our case this value is equal to

20 Lg(w)
, VOIBE .
/ 0,0126 o
20 -t T
(1)'230581 /[\ /;(11"470551& As has been said before, the long-period link
[7) L | - is close in its characteristics to link II, because the
aor \\‘,ﬂ/ 70 1t influence of links II and IV is small, Therefore,
.20 : \\‘ the damping coefficient is approximately equal to
A ;—ﬂ From this it is easily seen that a decrease
9)0722 et St e of XV (thrust increase with speed increase in turbojet
- engines at supersonic speeds) will lead to anincrease
235 b L J, ] ] 11 the 1atio of the velocity amplitude to the frequency
! of the slow natural oscillations of the airplane,
o0 ; I B Similar reasoning can be applied to the change
] in A6, because the transfer function of link V in our
! case can be regarded as a function of a purely ampli-
450 — b= e T fying link, However, in general, with large angles
w' /I w" of attack, as has been discussed before, the reference
0 - A frequency of link V, which as a rule decreases with
a01 \\\ a1 70 0w decrease of speed, can be greatly changed. Link V
\ can even become unstable, A decrease of the refer-
4] oummmts S e a— ence frequency of link V results in a proportional de-
ll crease of the amplitude of induced oscillation A6 .
B s t I Let us consider the change in altitude during slow
| deviation of the elevator A§: during horizontal flight
735 ‘] 4 © = 0 and, therefore, Wy (p) = 1, and AH will be a
\ simple integral of the change VA@ g thus the change
150 ’ - of altitude will be completely determined by the

Fig. 7. Logarithmic frequency characteristics of the
approximate transfer function of the elevator control
system, in the case of slow longitudinal motion, Al-
titude 12 kilometers, velocity 800 kilometers per hour,

character of the change of the trajectory angle A6,

In conclusion, let us note that in the slow motion
the change of the parameters A8, AV and AH de-
pends largely upon the qualities of link II, for which
the slow-motion frequency is almost the resonance

frequency, and therefore in this case small changes of the frequency w of slow motion leads to a large shift in
phase of the induced oscillations, Here the character of the induced oscillations depends largely onthe deriva-
tive with respect to flight velocity of the tangential forces are applied to the airplane:

X &
———-—sinb.
m %4

Let us now turn to the case when@ = 0. In this case the transfer function W, (p) is a polynomial of second
order, and not of the first as in the case of § = 0, which seems to cause some complications,

At large frequencies which are in the neighborhood of the reference frequency wy of link 1, we can consider,
1
as before, that link II is doubly-integrating with transfer function W, (p) = o link II is purely differentiating
X
with transfer function Wy (p) = - P and link IV* is purely differentiating with transfer function p. Therefore

we can write

4W(p) 1 . , ) 1 X
R = — W, W, W W ~=— =W .
V. @) W, () 2 (p) Wi (p) W, (p) +(P) w, (p)+ g (r)
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Expanding this expression, we find (in the case when M‘z’ = 0)

4w ( re M,‘”+M;‘) M £( g0 )24 )
VW,(p) - mV cos 68 Js Js m m mVcos8/
Yo MM MY oMr X (M ot x")
= p? —_— 2 g2 — 2 " T2 4T e, (3.15)
P +(mV A ) T T\, )

From this expression we can see that for short-period motion, even at a laige angle 9, the damping coefficient
does not change, but the frequency changes somewhat with the change of angle 6. However, since the multi-
plier of tang is very small, then even for large 8, up to 80°, we can cons:der that the short period motion is
completely described by link I alone,

In the case of slow (long-period) motion we can again consider

»
z

1 M
Wx(P)=kx=““7ﬁ—.. W;(P)=——7’ .

With these conditions we have

»

IO W, (o) W, (0) W (0) W (p) = —— — 1 M, () W () =
W:(I’) —Wz(.”) 1P o \P 4 P ‘ P _W,(p) )T?f; o7 ! pr=
XV ¢ ) Ye M“"[X' Y'p][ 16 YV ]
= p? - [} L. —_ ——
P +(m Vsm Pt mVy ﬁ: mp+mV , Vv mVcosd |’ (2.16)

Therefore, also in the case of long-period motion, we can approximately consider the airplane as a sys-
tem of second order, as before. But, in contrast to the short period motior, the presence of an angle g very
strongly influences the transfer function during control with the elevator,

In order to illustrate and confirm the degree of approximation, the :oots of the complete characteristic
equation for the case of = 60° (H = 12 kilometers) were calculated, as w:11 as the roots of the polynomials
(3.13) and (3.16), The results are shown in Table III,

TABLE II11

1 Roots of polynomials
By Formulas 1 and 1

W) W)

Exact values of

Kind of motion roots , (3. 15503, 16

0.0114.4£0.049 ¢ 0.012440.0515

—0.513+1.74i —0.47841.752 —0.478 £ 1.732

!
Long-period 0.0107 + 0.495¢
Short-period

As can be seen from this table, the exact and the approximated valuzs of the roots are very close, Also
the approximated values of the roots of the characteristic equation can be sbrained as roots of the polynomials

1
~— -— and ——— , but with less accuracy.
Wi (p) W2 (p) Y
All the previous considerations are true when MZ = 0. When MX# 0, then the general considerations re-
main in force, but in this case W, (p) has to be broken down into its factor

W.(p)=(p £ —p.) (p—py).

in which the relationship of frequencies will usually be preserved, Therefcre, during short-period vibrations
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during long-period vibrations

W.(p)==p(p'3v—°—px);

W, (p)=—pi(p — Ps).

o

J



26

CHAPTER O

LATERAL MOTION

Section 4, Block Diagram of Perturbed Lateral Moticn

Let us write the equations of lateral motion in operator form= (see Appendix I) [2] * *

8 8
(p-f‘——)ﬁ—(psinaw- cosB)T—myf‘f‘i—Z B0

cos § mV

M? My My M MP_ M
iyl R Vel S RS -3V e i A =g bed  b

x

w - "y m 8
My My M M2 M
@ I’T+lp~( *L+ 2 'gﬁ)] “‘j‘ a+—-~an,
\' V

Py =,

cos ¥
p7=wx'_s‘nﬂpq’=m,t_wy tg&‘

Let us eliminate the angle of sideslip from the system of equations (4.1)

M*E

add the first equation, after it has been multiplied by Y

¥
2z _ _ M
by p———v , the second equation, multiplied by —
m y
MP
by —; we will obtain
R

zP M My Z* (MY M‘”' M? cos b
2 B )' Y _ IS D SRR JU Y
(™ e 2w ot 5 (5 + e )- ]

J, cos d

(IJ' L p ’
_| My p -F(— Mmyx zb M
Jy

Jy Iy mv mv,

M8 ME M MEM J [( wMb MP
_ My Py e =t =7y Ty 3)»,_
[ J,P+J, Je  Je dy m Je +J, gh Jp—aole, +

M2AME M 3M° ( MY M M m!
- = 8 )o )
+( Je J,+ 7y J,) s+ e 7,70, L)

lM?’” Mlll z? 2% M5‘|
+

) Ma 6 M‘a 7P
7, —-m—&—i—J—ySln p—i——***cos ]T"‘“"(p__

o+

(4.1)

. In order to do that we have to

, 1o the third equation, which has been multiplied

J—y » we must =dd to the third equation multiplied

(4.2)

+ It is assumed that the coordinate axes here are the principal axes of inertia, and all derivatives are referred

1o these principal axes (sec Appendix I1).

e -

Nete.

,and &y are standard Russian symbols for deflection of the ailerons and rudder, respectively. Translator's
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where

. M* (M"y M )+M’ (M, M= )
o= — |2 X 4.3
H Jy Iy \ J Jx (43

The second of these equations possesses a simple physical meaning. Let us write the moment equations
about an axis which is inclined to the longitudinal principal axis by an angle ¢. For this, it is sufficient to
multiply the second equation by Jy cos ¢,the third by Jy sin ¢, and add them, Here the terms containing A
will assume the form

(M cosp + M) sing) p== M°B,

where M is the moment about the new axis. If we choose the angle according to the equation

we will obtain exactly the second equation of (4,2), in which in this case, M? *Z% =(. In other words, the

second equation of (4.2) represents nothing else but the moment equation about an axis such that the moment
about this axis does not depend on the angle of sideslip. This axis can be called *the neutral axis of sideslip®.

The system of equations (4,2) can be presented in the form of the block diagram, which is shown in Fig, 8;
the transfer functions of the individual links have the form

1
W, (p) = »
' VAR " M 20 My My M coso
Pl g ) p g | g d -
mV Jy J mV\ Jy Jy Jy cus M

" .

W (p)—(—~4—+ tg\)>p——a4_0,
I

MS o MEM mE M ox’

W, (p)=
P T Jy

(4.4)
W, (p) =

Mx Mo zP mB ) g MfP
y 2 y T Y s T Y
. A _— ——=8sina cos i,
Wilp)=-—-p +( Sosina Jp+

”'// Mw Z0 M8 2
W =mp =TT
Jy mV ' Jy mV

"‘3 z*
W (p)— ("_IT/)

The system of hnks I1- V forms a closed stabilization loop, The other links will be called the steering
links (cf, Section I),

Frequently it is necessary to introduce the signal g. In determining B from the third equation of the sys-
tem (4,1), after simple but extensive calculations we will find

Mf,a cos 2 M cosh z”H(M YoMy | 8)} }
o My N z K (a5
p=Wi Wi+ Jy cosh 03+[mvp+ Jy cosd mV T Jy g (4.9)

where



28

. My MOx MY Mox
W/s(p)=smap’+(*'~-"~ sina+ —2— cosa 4 £ cosﬁ)p——-g—cos 8(—”— + X tg&). (4.6)
Jy Iy v v Iy 7y

Equation (4.5) can also be represented in the block diagram Fig. 3. For this it is necessary to send the
signal y through link VIII with the transfer function Wy (p) and add to it the signals f)sand & g sent through
the additional links according to Formula (4.5), and the whole should bz sent through a link with transfer func-
tion W, (p).

Link VIII with the transfer function Wy (p) is a differentiating lin} of second order, At « = 0 one of the
the roots of the polynomial Wy (p) becomes infinite, and the link becories a differentiating link of the first order
with the transfer function

My g £ MOx M x
7 = Yy - 8 _— b} y_ ¥ 8’) . *
W, (p) ( 7, + 7 €08 )p v cos ( 7, + 7, tg (4.6*)

In other words, in this particular case }ink VIII can be expressed in the form of a sequence of two links
in tandem: one amplifying link with the amplification factor

w

Mt I 4
ky= Y- 4 "—cosd
s Jy Ty

and a second link with a transfer function

My-" t-'ﬂyllg&
. 4 J
Wi(p)=p — £ cosd D22
14 My"' P
— ¢os 9
7, + v €os

If a # 0, but the valueof o issmall, then the frequency of the first link becomes finite but very large,
and practically, the relations remain: a sequence of two links, one of which practically is amplifying and the
other differentiating of the first order, In other words, for small values of « it is possible, in the expression
for Wy (p), to set a = 0 without a large error, and to make use of Formula (4,6°),

Let us note that in the derivation of Equations (4.2), in eliminating B, we are dividing the equation by

M
¥ . therefore, the block diagram presented is true only for airplan:s which have directional stability, This
y Mp
can also be seen from Formulas (4.4); when J—y= 0 we have

y

1

RER
P ( 7 + 7, tg ]

W, (p) =~

Vi
[”" 7:71?]

My (MDY MOE
Wi (p)= —J—'lp-(~f+J—’ rga)l.
x ¥ ¥
I
W (p)=— ;'2 e '
Uy
|
W‘ (p):‘ ’
r
i ‘My.l’ 78
Wilp)=—"—plr——,)
y
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The transfer function W (p) of the open stabilization loop in this case equals

W(p)=—W,(p) Wa(p) Ws(P) W, (p) Wi (p) = —1.
Therefore, the block diagram in this case is trivial, and does not give us any significant results,

It is possible to construct another structural scheme for the case M = 0; however at this time all aircraft
always have directional stability (normally they are even aperiodically un table), and therefore in this work we
are limiting ourselves to the example examined,

Link I is normally an oscillating link; as will be shown in Section 6, this link specifies the presence of a
lateral oscillating motion (*the Dutch roll"). We shall call it the oscillating link. Link II is a differentiating
link of the first order; the presence of it specifies a spiral motion, and therefore we can call it the spiralling
link,

Finally, link II is a link of the first order; the presence of this link, as is clear from the structure of its
transfer function, is connected with M‘:x, the damping mornent of rolling motion; therefore we can call it
the rolling member,

As will be shown in Section 6, links VI and VII areinpractice either unimportant (at low frequencies)
or degenerate into purely differentiating linksd(at high frequencies); link ‘Il is practically unimportant because
M 3
Y

y

of the small magnitude of the coefficient

In the next section we will give a brief analysis of the characteristics of the links,

Section 5. Brief Analysis of the Characteristics of th: Links.

In order to present the characteristics of the individual links compriting the stabilization loop, and also
of the control links of the block diagram of lateral motion in contemporar airplanes, we have made calcula-
tions of their amplitude-phase characteristics,

TABLE 1V
Designation H-=5km | H=12km Designatio: H=5 km #=12 km
pv? [kg] MYy 1
qg— |2 1850 780 y .
‘2, m 7, Le:] —0.456 —0.19
M=— 0.69 0.75 Moy [ 1]
a - —1.26 —0.56
b q Je sec |
Z H | t )
== —0.0486 | —0.0152 Mo 1
mV | sec| == —3.92 —1.66
z.r, 1 7 J,\' _S€CJ
— —0.14 —0.059 Méll ' 1
mV | sec | .o ,__:| —1.78 -0.75
J S€C
M2l N
— = ~14.7 —6.2 M 1]
Je [ sec ] | e —12.8 —5.7
Mg[ 1 b -]y | et
2 — —5.41 —2.28 Miu 1]
J, Lsec |- —1.98 -—0.835
@ Jy |se:
M. 1 : -
e -0.0442 | —0.0198 Mp |1 0 0
‘ J se
y L p

In these calculations we have assumed the following values of the asrodynamic coefficients for the velo-
city V = 222 meters per second (Table IV).
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In the initial regime, for simplicity, it was assumed that & =0, a = 0.

Figure 9 presents, for an altitude of 5 kilometers, the amplitude-frequency and phase-frequency logarithmic
characteristics of link I— V, which form the stabilization loop. Analogous characteristics for an altitude of 12
kilometers are presented in Fig. 10, In constructing the characteristics, each transfer function was divided by
the amplification factor of the link, i.e., the amplification factor of all links was assumed to be unity, The
amplification factors of the links are presented in the same figures,
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Fig. 9. Logarithmic frequency characteristics of sta- Fig. 10. Logarithmic frequency characteristics of
bilization loop links for lateral motion. Altitude stabilization loop links for lateral motion, Altitude

5,000 m., velocity 800 km/hr. Amplification factors: 12,000 m., velocity 800 km/hr, Amplification factors:

ky = 0.184sec?) -14.7 db); ky = (0.0881/sec’) (-22 db); Ky =(0.433 sec?) (~7.29 db); k; = 0,0122/sec?) (~38.2

kg = (0.054 sec’) (—25.2 db); kg =(1sec); kg =(~0.239/  db); ky = (0.274 sec?) (~11.2 db); kg =(1 Aec); kg =

sec?) (—12.4 db); k =—kekokekeks = 0,000209 (<73.3 db).  (~0.101/sec®) (~19.9 db; k = — kikokskks =(0.0001462)
(~76.6 db).

As the calculations have shown, link I with transfer function W, (p) is a stable oscillating link with refe.ence
frequency wy:

For H = 5 km, wy = 2,33;
For H = 12 km, wy = 1,52,

The relative damping coefficient of this link equals £, = 0.126 at an altitude of 5 kilometers, and §; =
= 0,081 at an altitude of 12 kilometers, Thus, this link is weakly damped. In the general theory of dynamic
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stability [2], this corresponds to the fact that oscillating motion is slowly damped.

Link II with the transfer function Wy (p) is for this example, an unsiable differentiating member of first
order with reference frequency w, = 0,0056 for altitude 5 km and w, = 0,1:0202 for altitude 12 km, As is seen
from these results, the frequency w, is very small over the entire range of the altitudes considered; and with
increase of altitude w, decreases considerably, The argument of the function W, (p) varies from minus 180°
to minus 270°, Thus the airplane under consideration is aperiodically unstable, However, the coefficient 2,
which determines this instability is very small. Therefore, because a, o is small, the frequencies w, are also

small,

The presence of aperiodic instability is typical not only for the airplane under consideration; most con-

temporary aircraft are aperiodically unstable,

The link of first order with transfer function Wy (p) is stable, Its re erence frequencies for the cases

1 1
H =5 km and H = 12 km, respectively, are wy = 3,42 we and wg = 1.6 pron As can be seen from these results,

the reference frequency changes considerably with increase of flight altitude,

The differentiating link V of the second order with transfer function Wg (p) is a stable link with reference
frequency wg = 2,26; the relative damping coefficient of this link is {5 = 0,00751 at an altitude of 5 km, and
{g = 0,00326 at an altitude of 12 km, Thus, this link possesses a very small damping coefficient, Practically,

it is a harmonic link,

Figures 11 and 12 show amplitude-frequency and phase-frequency characteristics of the control links,
As in the first case, the amplification factor of these links was assumed tc be one, Since at the altitude H=
= 12 km, wy = , the frequency characteristic of this link is not shown in Fig, 11,
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Fig. 11, Logarithmic frequency characteristic of sta-
bilization loop links for lateral motion, Altitude

5,000 m, velocity 800 km/hr, Amplification factors:

ke = (-0.0112/s5ec®) (-39 db); kg = 0; kg = (0,0202/
sec?) (-33.9 db),

Fig. 12, Logar thmic frequency characteristics of
stabilization lcop links for lateral motion. Altitude
12,000 m,, velycity 800 km/hr, Amplification
factors: kg =(1.0147/ sec®) (~36.6 db); kq = O;

kg = (0.0084/ s:c?) (~45 db),

The control links with transfer functions Wg (p), Wy (p), Wy (p) are :1able differentiating links of the first

order. Their reference frequencies are equal to:
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At atitude 5 km At altitude 12 km
wg = 0.00564 wg = 0,0175
wq = 0,14 wq = 0,059
wg = @ wg = 0.346

As it seen from these results, the frequencies of the control loop links (except for link VIII, the frequency
of which can change within wide limits) are considerably smaller than the frequencies of the links of the sta-

bilization loop, with the exception of link II, ;s
M3
y

As a result of the smallness of the coefficient , link VII transimits considerably weakened signals

y
and in practical calculations it can be considered that W, (p) = 0,

Let us examine more closely the links which form the stabilization loop, In analyzing their character-
Istics we shall pay special attention to the changes due to their dependence on the air density and flight velo-
city. llere, just as in Section 2, we shall disregard the influence of air compressibility (Mach number M) on
the force and moment coefficients, or in other words, we shall consider the change of forces and moments only

with the change of the dynamic pressure
gtV
2

The transfer function of the oscillating link I can be written in an expanded form:

I
W (p) = =
( 6 v wyl?S V) I’m‘;ys:-’/? o St Ve
T __ . . X — _
PN Ceam PO qg Y P o Y Ty 5

1
Pi+2Gewptoef |

The reference frequency of this link equals

From this formula it follows that the frequency w, is proportional to flight velocity V.  With increasing

g Mgy m’, 2m
altitnde wy decreases. Usually the value ¢, =25 is small in comparion with =p _S—I for all altitudes;
2r re p
¥ y

therefore we can approximately assume that

SV 2m m; | mb
w=2_1/ = l/ 2 Ty
2m pS¢ ri : r;
wherc
2 2m
fpL=-—, T = .
pS/ pS IV

From this approximate expression for w, it follows that the frequency w; decreases with increasing
altitude approximately as vp. The relative damping coefficient of the link under consideration £, can be
presented in the following form:
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As can be seen from this formula, the relative damping coefficient of this link does not depend on the
flight velocity. With increase of altitude, damping deteriorates as a result of the increase of the relative den-
sity y. Here, just as in the expression for wy, we can neglect the quantity

Then the relative damping coefficient can be written approximately as
IN 'y

T
)‘

/—Qm SR d
V ops Vs

Therefore, the relative damping coefficient of link I, decrease with ncrease of altitude, just as the fre-
wuency wy, approximnately proportionately to Vv p.

The amplification factor of this link is
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From this 1t can be seen that the frequency w, is proportional to fligh velocity and air density,

Since the coefficient ag, for contemporary aircraft is small, the frequency w, for all altitudes and velo-
cities is considerably smaller then the frequency of the other links which form the stabilization loop. It is pro-
portional to the flight velocity and air density.



The amplification factor of link II can be expressed in the following form:
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Link II has the transfer function

1

W, = .
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Its reference frequency is
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The frequency wy,as also the frequency w,, is proportional to air density and flight velocity,

The amplification factor to link III is

The differentiating link V of second order with transfer function

pSV (m*® 1Ac” SV
—p RN A—

WW)Mp A . p+—W)

has a reference frequency

w2V 2

The amplification factor of this link is

The relative damping coefficient ¢y can be written in the fo]lowing form:

ey
& 2m 2g

As can be seen from these formulas, the reference frequency of link V does not depend on air density and
flight velocity,

1

= —-—,
wgT

The coefficient g increases with increasing velocity, and decreases with increasing altitude,i.e., it de-
teriorates with increasing altitude. It is very small, and the link is practically a harmonic link,

In old airplanes with small flight velocity, the frequencies of all the links I — Il were small in comparison
with the frequency of link V, Therefore, for old airplanes link V could be considered to be purely amplifying with
the amplification facror
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In other words, for old airplanes we could disregard the mixed derivative MY x, For contemporary air-
planes, as a result of their higher velocity, the frequencies of links I and Il are comparable with the frequency
of link V. Therefore, this link can not be considered now as being purely amplifying., This fact explains the
instruction, frequently encountered in the literature, that for contemporary airplanes it is necessary to consider

the angle hetween the principal axis of inertia and the velocity vector, because this angle influences the value
of MY X (see Appendix II) [2].

Now let us consider the control links. The transfer function of link VI can be expressed in following form:

Wo(p)=min = pv'p+ pV2 22 (mt i — mtuch) =

= ¢ dote ot —
;,‘;12 [m,ﬂp+(myctﬂ miach) - J

Since the value of In M [' is usually larger than the value of m‘ c; 2/, this link is a stable differentiating

link, Normally the dlfference 1)13 f “Ho— I)I ”(" 1s small, and therefore the reference frequency of link Iv
is also smalt:

ettt . ombar 2

1 1 mic, m e,
7.: § ke fna"i
y

As can be seen from this expression, the reference frequency of link VI de ‘reases, with increase of altitude,
proportionately to the density p and increases proportionately to the veloc ty V.,

The amplification factor of link VI is

, 3 A 5
Ry = == (M ~ m'ic?).

v

From this relation it can be seen that ke decreases as p? with increase in altitude of flight, and increases
proportionately to the cube of velocity, V3,

The transfer function of link VII can be written as
P 5! 2 ] sr‘ z " ('g
W.(p)= ns o eV (p —c? oy =m'» e p— =1

This expression shows that the referencefrequency of link VII is

1
u)7=-—(E .

Therefore, with increase of flight velocity wy decreases proportionately to he density p and increases proportion-
ately to flight velocity V., The amnplification factor of link VII is

ky= —m'ach .
r’"

This coefficient decreases proportionately to p and increases proportionate’y to V2,
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[n contempcrary airplanes, usually, the value of /!13) is close to zero, Therefore(asinthe above example)
we can disregard link VII. It s possible that we will have 1o consider 1t at very high flight velocities in the

case of ailerons for which the quantity m%5#0.

The transfer function of the differentiating link VII of second order can be written as
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When o = 0, one root of the polynomial Wg (p) becomes o, As a result, link VIII becomes a differenti-
ating link of first order. In this case the transfer function has the form
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From this formula it follows that the reference frequency of the link depends on density p and velocity
V in a complicated manner. For example, if in the denominator we can neglect the second term

- 3

M7l then the reference frequency varies proportionately to pV. On the other hand, if we could dis-

Lenis =
:
regard the lirst member (at very high velocities), the reference frequency varies in inverse proportion to velo-

city and does not depend upon p,

In the case, when the angle of attack « is not zero, but is small, the transfer function W (p) has two
real roots and link VIII can be expressed in the form of two links of second order in tandem, In this case, the
roots of the transfer function can be approximately expressed by the formulas
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and the transfer functions of the two tandem-connected links will be
ror . 1 N
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Until the reference frequency of linl VIII', which equals
' 1 1 - £
W = — Py = — -~ | —— MYUx COsa -2 Cos §
8 P sin a [21,.3 y ‘i v s
is large (as a result of the smallness of sin o) link VIII' can be consider:d to be purely amplifying with amplifi-
cation factor
. 1

o _musy K 9
R, = ?:V_rzy my«+ v cos 9,

hi this case the sequence of links VIII' and VIII'* is practically ecuivalent to a single link with the trans-
fer function Wy (p), which is obtained at « = 0,

with increase of the attack angle the frequency of link VII' dectzases and can become cominensurate
with the frequency of link VIIL. In this case it is necessary to conduct an analysis of the transfer function
Wy (p) with actual figures,

Let us note that the angle a can reach large values, Let us also remind ourselves that we are reckoning
the angle of attack from the principalaxis of inertia (see Section 4), When the principal axis of inertia is deflected
downwards considerably (such deflection in particular cases can reach a magnitude of the order of 15-20°),and
the angle of attack relative to the longitudinal axis (or the wing chord) has a value of the order of 1¢°, then
the angle of attack relative to the principal axis of inertia can reach 25-30°,

The amplification factor of link VIII in all cases is

_ £ v, wr qi —
= — g (5 cos i sin ) =

&S
2

— - m®r cos & — m=- sln O);
qmr ( y y )

y
it does not depend on the velocity V. and varies proportionately to the censity p.

Even the brief analysis presented above shows that the transfer furction Wy (p) depends on the flight re-
gime, aerodynam’c parameters, and design parameters (for example, th: angle of inclination of the principal
axis of itertia) in a very complicated way, This fact explains the comylicated change of the angle of sideslip
during transient processes, because it is the transfer function Wy (p) which detennines 8.,

Section 6, Transfer Functions of Control, Simplification of Equations of Motion

and Transfer Functions,

The stabilization loop (system of links I — V) can be convenient]' opened after link V. The transfer func-
tion of the opened loop has the form

Wip)=—W,(p) Wa(p) W (P) W, (1) W, (p).

The characteristic equation for an airplane with fixed controls wi'l be

— _W,(p)W,(p)= P [l + W(p)] =0.
AL AT I AT A

It is casy to confinm that this equation agrees with the usual equation obtained by classical methods, In
particular, the term not containing p in the characteristic equation is

Therctorg, a necessary condition for stability (condition of absenc:: of aperiodic instability), will be the
uasual condition

>0,

that is, the condition k,< 0, where k, is the amplification factor of link I,



39

Having the transfer function of an opened system, we can apply well-known frequency me thods [3] to
the analysis of stability,

The equation of motion (4.2) can be written in abbreviated form in the following manner:

w, =W, (p) [W; (p) 1+ W.(p)oy+ W.(p)d,],
M= M2 M ME MO P M MP
‘W’(p)(l)y—»(»——") -",__L’,'.:>; _( Ty Ty ‘) -l J (6.1
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From this, by solving the equation for y and wy, we obtain
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Formulas (6.2) give the transfer functions relating y and wy to (SH and 63 . Having the frequency
characteristics of the links , we can easily construct the frequency characteristics of the control system, by
using the well-known diagram [3] which allows us to construct the frequency characteristic of a closed system,
when the frequency characteristic of the open system is known. However, here we lose clarity and simplicity.
Therefore, a simplified theory of the transfer functions of the control system will be given later, based on the
fact that frequencies of the individual links are very far apart (Section 5),

In Section 5, we have seen that the reference frequency of link II is usually considerably lower than the
frequency of the rest of the links, Therefore, in the slow motion we can consider links I, IIl and V as purely
amplifying; on this basis we can write the transfer functions as

1
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Now the transfer function of the open systemn will be
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p 1
W(p)=: —kkk W, (p) r

’+wr(p):—'klk8k6W?(P)+p .

From this we obtain (6,2)
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The equations of motion (6,1) will take the forn
o, =Rk +/[W, (p)3y+ o W, (r)oy, ]

Ml M mia oM imba mE bromP (6.4
v dy y A x y y x
Equations (6.3), as also Equations (6,4), show that in the slow motior the airplane can be regarded as an
~brect of first order. This fact, which has been known before, receives a f:rm theoretical basis in this work,
The theory allows us to calculate very easily the time constant of such an nbject. It equals

Mo
- 1 Je 1 *
“ kikgkyay o a0

We do not cite a complete expanded expression for Ty, since it is v :ry complex. For our example
(H - 12 km) the time constant Tpy, is very large (T,;,= — 7,300 sec) and the :irplane is practically neutral,

For the same aerodynamic data given in Section 5 (H = 12 km), we vill obtain

p— 0,000137 Ho p0,000137 ¥

@ = — 0397 P+0.0175p40,1148 , 0,157
¥ ' P — 0,000137 AT p—0,000137 >

y= —0,615-7232.01725p— 1,53 3,5

A this example shows, the quadratic polynomials in the numerator canbe practically considered as
being constant at low frequencies, In other words, in Formula (6.1) we car consider

We(p)=W:(p)=0.

Finally, we have
s 13 ]
(’i'_xi MM ﬂ) (M'__#f ﬂ_i‘fﬂ?)
j= o N e dy Iy Uy S\, T
koks P — kikshs Wy (p) " P — Rhghts W, (p)

-3 (6.3
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It is easily seen that Formulas (6.3') will be obtained if in the last two equations (moment equations) of
the system of equations of motion (4.1) it is assumed that p = O(that is, we assume that the moments are statically
balanced), and in the force equation we disregard the term p sin ay,

Most contemporary airplanes are nearly aperiodically neutral; for a neutral airplane o, = 0 and the

transfer function W, (p) equals

8 ]
W, (p) = ~(§'f-3,';’—fg a)p.

Therefore, Equations (6.3) will assume the form
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In these formulas we can also disregard the transfer functions W (p) and Wy (p) in the slow motion; finally

the formula for a neutral airplane assumes the simple form:
= Y _ X
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Formulas {(6,6) show that in this case the airplane is an object of zero order, the derivatives of the basic

kinematic parameters y and wy being absent,
Let us note that according to Equation (6.3") in the case of the slow motion we can always consider
m_y= klks'T'
In the case of the rapid motion we can consider that link II is a purely differentiating link with the trans-

fer function

MmE mB
W, (p) =(—T:+-ijfg G)P-

The transfer function of the opened system will be
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., Mi Mg,
Wipy= — 18| W, (p) W, (p) W,(p)
Jx Jy
The abbreviated equations of motion will have the fornn
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The airplane in this case represents a system of third order,

The second of these equations can easily be obtained by writing the moment equation about the neutral

axis of sideslip {Section 4, Equation (4,2))and assuming oy = s

The approximate characteristic equation for the rapid motion can b written in the following form:

] (Mﬁ M

Wi (2 Wiip) [1+ W (p)i=0.

8w -
"8 )u (p) = Wi(p) Wslp)

As the calculations at the end of this section (Table V) show, the mots of this characteristic equation are,

1 1
practically, almost identical to the roots of the polynomials - -—- ——— ; this is because the amplifica-
Wy (p) Wy (p)
tion factor of link V is small in comparison withthe product of the amplification factor Thooas the velocity

143
increases the difference will also increase,

In other words, for the case of the rapid immotion we can approximately consider (see the analogous discussion
in Section 3)

LW () =1,

Therefore the transfer function (6.

2) can be rewritten in a simpler iorm:
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In many cases these formualas can be simplified even more, if we consider that for the rapid motion we
can assume link VI to be purely differentiating (its reference frequency is small) with the transfer function

M4

W (p)= ;j— p.
y

Also, in the first square brackets of the second formula we can freq iently assume Wg (p) = 0 because
M3
Finally, because of the smaliness of the quantity -

y

of the smallness of amplificiation factor kg, we can

n

assume Wy (p) = 0,

We now obtain simple formulas for the rapid motion:
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From these formulas it is easily seen that in the case of control only by the ailerons (&, =0) we will
obtain the usual expression for the angle of bank (equation of rolling motiom)

5.
M9
gy .
= - By 6.9
Y r M5 - 3 (6.9)
)
prlop—- Byt
Je Ie o MY
| .

The angular velocity of yaw in this case will be simply expressed in terms of the angle of bank
o,=W(p) W (p) 1. (6.10)
Because the amplification factor kg is small, the angular velocity of yaw will be insignificant,
In the case of control only with the rudder 183 =0) we will have
¢
M H
; y
o, = Wi (p) P (6.11)

that is, the usual approximate expression of transfer function relating the angular velocity of yaw to the rudder
deflection, For the angle of bank we will obtain the more complicated expression

M8 Al AR agtr R I L
p=W »ww“~4+iwﬁ4ﬂu('J_J”ﬂ~f»”' (6.12)
Py L () 5 () 7. 7. ° 2 / I T ) W, (p) "

which can be simplified only by using additional assumptions,

For our case (H = 12 km) we have the following numerical expression:

— 0466 _F U5y — 4,61 1,

-
p240,240p 1228 5 0

1

from which we can see that all the terms in the numerator are significant and in general cannot be disregarded.

From the above it follows that the three investigated types of motion represent a spiral motion (slow
motion), an oscillating motion (rapid motion during steering with the rudder) and a rolling motion (rapid motion
during steering with the ailerons),

For each of the types of motion the method presented, based on an analysis of the block diagram, allows
one easily and simply to write down abbreviated equations of motion,

For the rolling and oscillating motions, in the denominators of the transfer functions we have the poly-

1
romials d o) i therefore, by setting these polynomials equal to zero we should obtain approximate
3

1
Wy (p)
values for the roots of the complete, exact characteristic equation: such a calculation was made for our example
(H =12 km) and is shown in Table V.
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The complete characteristic equation for this case has the following form:
p*+1,09p" + 2,69p2 + 3,95p — 0,000549 = 0,

Calculations show that natural airplane motions are usually charact:rized by two real roots py and p,
(p, is the small root of the characteristic equation and p, is the large root and a pair of complex roots py and
P4s

The root py characterizes the rolling motion of the airplane. It shoild be compared with the root of the
equation W’—l(}—) = 0, The natural frequency of link II for this case equals 1,608, i,e,, within an accuracy of
5, it coincides with the exact root of the characteristic equation,

The pair of conjugate complex root ps ¢ characterizes the natural a rplane motion and should be com-

1
ared with the roots of the equation ———— = 0
P Wy (p)

The frequency corresponding to this pair of roots coincides with frecuency wy of link I with an accuracy
of up to 1,6%, and the damping coefficient coincides with the damping coefficient of link I with an accuracy
of up to 144,

1
The small root p, approximately equals p,~ — T8 it can be calculated with a very high degree of
m

accuracy,
TABLE V
Valuesof rootsof character- Approximate \alues
istic equation, of roots
Py =—1,0695 Py — wg = — 1,608
. 1
p.=0,000139 pg == — -7~ =G 000136
Tu
Pay= —0,10721,525 Pyr g == — 0,081 £1,52¢

In this section we have considered various simplifications for the case of a "typical” airplane, which is
nearly aperiodically neutral, A similar analysis and corresponding simpli ications can easily be made for an
arbitrary case when the airplane characteristics are greatly different from the usual ones,

CONCLUSIONS

1. The system of differential equations of perturbed airplane motica ( equations for the variations), for
longrtudinal as well as for lateral motion, can be expressed in the form of a simple single-loop block diagram
with links of first and second order, The signals at the input and output o' the links have a definite physical
meaning,

2. The representation of a system of equations as a block diagram .llows us to apply, in the investigation
of stability and control problems, contemporary methods of general contrc1 theory: frequency methods of com-
pensating net works, circuit analysis, etc,

3. The representation as a block diagram allows us to obtain simpl:: approximate expressions for the trans-
fer functions of the airplane control system depending on the frequency raage of the various types of motion,
In particular, in coutrast to existing methods, which give us approximate t:ansfer functions for rapid angular
motions relative to the center of gravity, we can easily obtain approximae expressions for transfer functions
for the slow motions, connected with displacements of the center of gravity,

4. The represeritation in the form of a block diagram allows us easily to formulate approximate differen-
tial equations for various practical cases,

*Roots of the polynomial ————-
00ts O poly wiip)
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APPENDIX 1

EQUATIONS OF PERTURBED LATERAL MOTION OF AN AIRPLANE

Because derivations of the equations of lateral motion are presented either in literature which is out of
date {2] or in rare publications having a small circulation, a derivation -f these equations is given in this ap-
pendix,

We will use two orthogonal systems of coordinate axes: anearth sys em,and a system rigidly connected with
the airplane. The origin of both systems is located at the center of grav 1y of the airplane O (Fig, 13). The
earth axis Oy, will be directed vertically upwards, the axes Ox, and Oz, — in the horizontal plane,

The airplane’s system of axes will be chosen in such a way that the axis Oz will be directed perpendicularly
to the symmetry plane, and to the right if we are looking in the direction of flight; the axes Ox and Oy will
be located in the symmetry plane of the airplane (axis Ox forward, axis Qy upward).

We will specify the relative orientation of the two coordinate trihedrons Oxyz and Ox,yo2, by three angles,
The yaw angle ¥ will be the angle between the axis Ox, and the projection of axis Ox on the horizontal plane
(straight line Ox'). The pitch angle 9 will be the angle between axis O : and the horizontal plane, The angle
of bank y will be the angle between the airplane symmetry plane and tie vertical plane which passes through
the axis Ox (in other words, the angle between the axis Oz and the straig it line 0z").

These angles can also be represented in another form. Let us supesimpose the airplane trihedron on the
earth trihedron. Let us turn the airplane trihedron through the angle ¢ aout the vertical axis Oyy. The axes
Ox, and Oz, will assume the position Ox' and Oz'. Now let us turn the a rplane about the new axis Oz through
the angle 9, The axis Ox will assume it final location, By turning the a:rplane about the logitudinal axis Ox
through the angle of bank y, we will obtain the fina! position,

Table VI shows the direction cosines for the transformation from the earth axes to the airplane axes.

TABLE VI

Axes Ox, Oy, 0z,
(oA ‘0‘\{;(‘05# - sin # —cosVsind B
v ng:;;; LOS:{ cosysind cos 1 cos i sin Y cos + cos sin ¢ sin § -
0z Cos 1siny - sinycosdsind — sin 7 cos i °0s Y cos  — sin ysin ¢ sin §

From the above it is clear that the angular velocity vector can be onsidered as a geometric sum of three
vectors (see Fig, 13). the angular velocity of rotation about the vertical .xis Oy, the magnitude of which is
d . 3 3 X i . ) Ll di
d: i the angular velocity of rotation about the straight line Oz*, tte magnitude of which is ) = ;
dt
and the angular velocity of rotation about the longitudinal axis Ox, the magnitude of which is y=- L. with
: dt

the help of Fig. 13 it is easy to find the projections of the angular velocit/ of rotation along the airplane axes;

Y. -
he



(')‘:“"—{—q./"in“, '
mo=bcoshcosy+iisingy, i
S . (L1)
W, == oS siny 4 ¥ cos .
From these formulas it is easy to derive the inverse formulas
rH L )
‘—?=x‘)=mysm7-rw,cosx.
dy . wy COS Y — wy Siny
== e (1.2)
it cos
- v * i
o T =e—twi(e,cosy—o;siny). J

The velocity vector of the center of gravity, V, will be oriented relative 1o the airplane axes by the
angle of attack o and the angle of sideslip g in the following 1anner (see Fig, 14); the angle of sidslip g
will be the angle between the velocity vector and the symmetry plane of the airplane, the angle of attack o

, [
y A
v
a of
x’ X
7, A
_ 90
v
Z
Fig, 175, Diagram of the angles of rotation of the co- Fig, 14, Diagram of the angles of attack and side-
ordinate exes during motion of the airplane, slip.

will he the angle between the longitudinal airplane axis Ox and the projection of the velocity vector on the
plane of syinmetry, From Fig, 14 it is easy to find the projection of the velocity vector along the airplane
axes:

V.= VcosBcosa, }
V,=—Vcosdsing, (1.3
V,=Vsing, ’
and also the inverse formulas
tg 8 Ve t Vs % 2 7] 2
= m—e— s TR — = , — p .
VVi-'rV: B V. ]/Vx+vy+vz (L.4)

After these preliminary considerations, we can proceed to the derivation of the equations of perturbed
lateral motion. We will assume, as has been done in this work, that the airplane coordinate axes are the prin-
cipal axes of inertia, Then the moment equations for the axes Ox and Oy will be written in Eulerian form



dl‘x+ (j 'y) myu)’ = Mﬁ

y = +(./ -—J)w @, =M.

Since the initial motion is assumed to be in the plane of symmetry, then in the initial motion

p::u):n(o’=’r=0_

In the derivation of linearized equations of perturbed lateral motion, the variations of these quantities
are, in the first approximation, equal to the quantities themselves, which are infinitesimally small and of the
first order. Considering this, Equations (I.1) and (L 3) will assume the form (disregarding small quantities of any
order higher than the first);

7} ¢
. =17 Cos
ot

ay
W T — —_ ()-—-_ —_— i
2 T + sm\ ” + 1y tg hiX
(1.5)

e . et

V=V
In Euler's equations we disregard the products wy W, and wxw},, as small quantities of the second order,

unciions of B, w,, w,, 8, ¢, intoa

Further, expanding the projections of the moments, My and My' as »

series and considering only terms of first order, we obtain

Mo=MDv0 + Mvo + Wb+ M5, + M75,,
My=Mixo -+ Mvo + M8+ M 35, 4 70,

'

By substituting these expressions and the expression for wy (L5) int ) Euler's moment equations, we obtain

dw, 4/~u), . Y » '(i[ ) 5 . n ,
7 i = MO (bt | Mo+ MO+ M35, M5,
sl dt ; Yot A R . ‘
i (L6)
-,v y Y 11]" ( m 'T' (o)‘_ (1 ﬂ) —{v—- ” J’(U + ‘M),B + A! 3,}3 _I_ w ”b”,
(

After grouping together the similar terms of this expression, it is e isy to obtain two of the main Equartions
(4.1).

The equation of the projection of forces onthe transverse airplane xis has the form:
av, \
" (ndti +oV,— oV, |=Z—mgcos¥ sin T

where 7 is the projection of aerodynamic forces on the transverse axis 0.

For infinitesimally small disturbances in the lateral motion,
=18, o, =0 tgh+ »‘-ji, I,=- Vsing,
: dt
Vi=Vcosa, Z=2ZW4 2% *
By substituting the obtained expressions into the equation of force Frojections, we obtain

mVli— m(m tgh 44 )Vsm a—moV cosa=2Z% + 2%, —mg cos iy,

e Wwe dl\reé,ard the dependence of lateral force Z on Wysly and © becau,e of their small influence on it, The
quantity Z%1 has 1o be considered because in countemporary auplanes it is equal to 30-50%. of Z
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from which, after simple tranformations, it is easy to obtain the first of Equations (4,1), when we consider
that &= 0 + o and, therefore,

; sinsina+4cos Weos 2 il
tg ¥ sina -+ cos o= T =
cos i Cos ¥

Derivation of the equation of force projection on the lateral axis can also be accomplished in another
way, which is interesting in itself, since in such a derivation the physical meaning of individual terms becomes
clearer, For this we will find the projections of velocity vector Vv on the earth axes, by using Formulas (1.3) and
the table of direction cosines:

V. =1 cos (x,vy) + 1V cos(y.x,) 4+ V,cos (2,x,) =
= 1"coszcosficosicosy—V sinacos3[sinysin»—cosycosysini] 4+
4- V'sin B [cos y sin % < sin y cos ¢ sin 8],
Ve=Vcos (x.z,) + Vcos (32y) +V cos (2,.x) =
= — 1V cosacos3cosising— Vsinacos B {sinycosy+ cosysingsinid] +
4+ Vsin s [cosycos §— sinysin ¢ sin 9],
On the other hand, the same projections can be obtained by projecting the velocity vector directly on
the horizontal plane Ox,z,, and then resolving this projection along the axes Oxy and Oz, We obtain

Ve, = Vcosbcosl, V.=V cosbsiull,

Where II is the path angle, that is, the angle between axis Ox; and the projection of the velocity vector on the
horizontal plane; in other words, it is the angle between axis Ox, and the tangent to the course on the earth,

Comparing the two groups of formulas it is easy to obtain

cosBcos [T=cosacosfcosycosy—sinacosp [sinysiny— coscos)sin]+
+sin B [cos ysin§ -+ sin 7cos ¢ sin 8],
cosBsinll = —-cosacosBcosbsing—sinacos B [siny cosd + cosysindsind] +
~+sin B {cos ¢ cos ¢ -—sin ¥ sin ¢ sin §].

From this we obtain the formulas

cosdcos (P+T)=cosacosPcosd+ sinacosBcosysind +sinPsinysind,
cos8sin(¢+1)= —sinacosBsiny+sinBcost. (LD
with small lateral deviations, when the value of ¥ + II is small, these formulas assume the form

cos b =cosacos #-+sinasin®,
($+M)cosb=qysina+B.
The first of these formulas gives us the well-known relation 6 = & — a. The second allows us to obtain IL

1 sina

p—n2

cos 0 cos B

II-—-—-’P—F—

The velocity along the earth course equals the velocity vector projection on the horizontal plane
Vi=V cos9.

Therefore, the normal acceleration during motion along the course equals

W, =V, Mo yeoss| 444 L 4 _ sina ﬂ1]=-—vCosai¢+ VE _ Vsina 4L,
dt dt cos 0 dt cos 8 gt dt dt dt
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B o
ecause —-
dt cos d

(Equation 1,8), then finally

W= st % _ ar
" v cos & my-}-th Vsina at’

From this, it is easy to obtain the lateral force equation

.‘ig._. cosb al_ By
mV[d‘ oy —— sinam]-2$+266,, mgcos ¥y .

-

APPENDIX HI

FORMULAS FOR TRANSFORMING LATERAL ROTATIONAL DERIVATIVES

TO THE NEW COORDINATE #XES

In this work the principal axes of inertia of the airplane are taken as the coordinate axes. At the same
time, the static and rotational derivatives are usually calculated or determined experimentally in wind tunnels
relative to the velocity axes. Therefore, in this appendix we present for nalas for transforming the rotational
derivative: for lateral motion in a rotation of the coordinate axes,

Let us denote the initial axes (Fig. 158) by x and y, and the coordir ate axis rotated through the angle ¢,

by x* and v*. The projections of the vectors of angular velocity w and lateral force moment M on the coordinate
axes X', y' will be

M =M, cose+ M,sing, M = —M, sing+ M, cose,

; , (IL1)
o =w,C08 9+ w, sing, © = — g, 8ing+ o, 08 .

y

In the future, all quantities referred to the new axes will be disting sished by a prime (for example w).
With these designations we will obtain the following transformation form ilas for the rotational derivatives

M= vcos® g (MTy - M) cos ¢ sin s 4 ATy sin? s,
M =M cost s (M — MTY) cos gsin g — Al sintg,

) (IL.2)
M =AM costp b (M — M) cos psing - A sintg,

M =M vcosty = (MU R MY cosssing 4o rsin? g

Let us derive the first two fonnulas, In order to do that, let us note that the projection on the axis x'

ol that part of the moment which results from the angular velocity, equals: on one hand (we are considering
only the part of the moment which is caused by angular velocity of rotation)

M= Mo M 8 (0 08 g i) 4 MU (< wsin g e, 003 9),
on the other hand
/M‘ == /M\ CO3 %+ AWy S 7= (M:-"m‘ -+ ;M‘:"w\‘) cos 2 + ({M‘;-Ym. i A/];\‘w\‘) sin %,

Comiparing the coefficients of wy and wy in both expressions, we obtain
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M " cos g — M'\m-“ sing=M7vcose +.W vsine.
M sing + M " cos s =M cos o4+ M v sing,

.
Solving these equations for M\ x and M;(w y. it is easy to obtain the first two formulas of (IL.2); . in an analog-
ous fashion we obtain the two second formulas by comparing two expressions for My, The dimensionless coeffici-
ents involving the rotational derivatives can also be transformed by the same formulas,

)y
Fig, 15,

Transformations according to Formulas (IL2) can be simplified, if it is taken into account that the trans-
formation to the new axes through formulas (IL2) has the two invariants

\

L= e M = MO M, |

Lo MM MM = A Al M I (1L3)

2 \ it \

In the transforimation Formulas (11, 2) for small angles ¢, when sin ¢ is small in Lompanson with cos ¢,
the principal variable terms are the second terms with the multipliers cos ¢ sin ¢, Since M X g uaua]h Con-
siderably larger than M, @y and M;J), R
changes more than the other\ depending on the value of angle ¢ it can even change its sign,

and M;)X is even smaller, then in the transformation the value of Myx

The result of converting the rotational derivatives cited in section 5 to new axes, inclined to the old axes
by the angle ¢ = 4 15° is given in Table VIL,

TABLE VII
% —15° 0 +150

mix ~0,342 | —0,390 | —0,413

mey -0,120 | —0,125 | —0,110

mi —0,059 | —0,020 0,039

myy —0,243 ~0,195 —0,172
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It can be seen clearly from this table that the quantity m;UX unders oes the greatest change. This quantity
even changes sign.

The remaining quantities are changed relatively little. We note that it is just this coefficient mwX which
determines the characteristics of link V, and, in particular, the value of he reference frequency wg (see Section
5). Consequently, in contemporary subsonic airplanes, and in supersonic airplanes even more, the angle of in-
clination of the axis of inertia has a large effect on the stability characte ristics,

when converting from velocity axes to principal axes, the angle ¢ = —a, where « is the angle of attack,
that is, the angle between the flight velocity vector and the principal ax s of inertia,
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